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a b s t r a c t

Heterogeneous (HG) blankets consist of a layer of poro-elastic media with small

embedded masses that replicate the behavior of a distributed mass–spring–damper

system. The concept of an HG blanket used to control the sound transmission through

an aircraft double-panel system has already been developed and cited in the present

prime objective of this research is to provide a simple method to predict and control

material properties of the heterogeneous blankets through alteration of mass and

stiffness parameters. Mass inclusion size, shape, and placement were varied. If

optimized heterogeneous (HG) blankets targeted to specific applications are to be

successfully developed, control of these parameters is necessary.

This research offers a detailed analysis of the behavior of the mass inclusions,

highlighting controlled stiffness variation of the mass–spring–damper systems inside

the HG blanket. Characteristic parameters of the HG blanket like the ‘‘footprint,’’

‘‘effective area,’’ and the ‘‘mass interaction distance’’ are defined and confirmed through

mathematical calculations and experimental results. A novel, empirical approach to

predict the natural frequency of different mass shapes embedded in porous media was

derived and experimentally verified for many different types of porous media, including

melamine foam, polyurethane, and polyamide. A maximum error of 8% existed for all

the predictions made in this document.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This study provides an in-depth examination of the behavior of heterogeneous (HG) blankets designed to reduce the
vibration and sound transmission through double-panel aircraft structures (as shown in Fig. 1). HG blankets use small
mass inclusions placed inside a poro-elastic blanket, creating small mass–spring–dampers that can control sound
transmission at low frequencies. This document concentrates on predicting and controlling the behavior of these mass
inclusions. Although the concept of an HG blanket has been fully defined in the present literature, deficiencies in
methodical property control exist. The prime objective of this research is to provide a simple method to predict and control
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Fig. 1. Schematic of the double-panel system to be optimized: (1) fuselage, (2) HG blanket, (3) air cavity, (4) trim, and (5) interior acoustic field.
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the characteristics of the small mass–spring–dampers through alteration of the material properties of the porous media
and alterations in the size, the shape, and the placement of the mass inclusions.

The control of low-frequency noise in aircraft [1] is a challenge due to the weight and the thickness restrictions imposed
on any acoustic treatment. Typically the thickness of a passive noise control treatment limits the bandwidth over which
the treatment will be effective. For example, Baumgartl [2] presented the sound absorbance as a function of wave
frequency for several thicknesses of melamine foam as a function of frequency and showed that the absorbance was highly
dependent upon the thickness of the treatment. Thick layers were also required for the absorption of low frequencies. For
instance, the degree of sound absorption for 50 mm thick foam at 500 Hz is 0.5 and drops down rapidly to an absorption
value of 0.05 at 100 Hz. Therefore, passive treatments positioned inside the fuselage shell of an aircraft, where the fuselage
dimensions limit the thickness of the blankets to a few inches, causes the acoustic blankets to be ineffective at frequencies
below about 500 Hz [3,4]. In view of this finding, many researchers have suggested active techniques as a solution [5–7],
but these systems are often too complex and unreliable for practical use. As an alternative, HG blankets have been
suggested as a passive solution to this problem and have shown great potential.

In the present literature, the HG blanket concept evolved through a series of steps, starting with a single-point absorber
(as shown in Fig. 2(I)), extending to multiple absorbers acting over a distributed space (Fig. 2(II) and Ref. [8]), extending
further to multiple masses coupled together (Fig. 2(III) and Refs. [9,10]), and finally broadening to the full HG concept. In
the full HG concept, multiple mass inclusions are placed inside a continuous (porous) media to simulate a distributed
mass–spring–damper system (Fig. 2(IV)) that operates at low frequency where the blanket is no longer an effective passive
absorber. By employing an acoustic treatment (i.e. the porous media) to provide the stiffness for the mass inclusions, the
HG blanket concept combines both the main types of passive control mechanisms, damping (high frequencies) and
dynamic absorption (low frequencies), into a single treatment designed to control a wide frequency range. The acoustic
treatment, or porous media, is a complex structure with coupled fluid and solid properties [11]. However, in the low-
frequency regime where the mass inclusions resonate, the polymer matrix or foam provides the majority of the stiffness
that acts against the mass inclusions. With appropriate design, the resonances of the small embedded masses can be used
to control the low-frequency vibration of a structure as depicted in Fig. 3(a).

Kidner et al. [12] as well as Sgart Atalla, and Amedin [13,14] recently demonstrated that HG blankets have significant
potential to reduce low-frequency-radiated sound from structures. Kidner et al. generalized that HG blanket efficiency
increases when the masses are positioned to target certain modes rather than using a random distribution. In order to
target a plate mode, the embedded mass is tuned to the desired frequency and positioned at the anti-node of the targeted
mode. Proper tuning of the masses will result in a mode split from the targeted resonance of the base structure.
(II)(I)

(III) (IV)

Fig. 2. Schematic of the development of the HG blanket. Schematic of the development of the HG blanket: single-point absorber (I), multiple absorbers

acting over a distributed space (II), multiple masses coupled together (III), and HG blanket (IV).
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Fig. 3. Schematic of the plate with HG blanket mounted on top (a) and schematic of the damped mode split effect of the HG blanket, before (————) and

after (——) targeting base structure mode (b).
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In accordance with traditional tuned vibration absorber theory [15], the targeted resonance peak splits into two peaks, one
above and one below the original peak. If the damping ratio is correctly designed [16,17], both resultant resonant
frequencies have lower and more damped amplitudes than the original resonance (Fig. 3(b)).

Previous literature confirms that the resonance frequency of the mass inclusion varies with depth [12]. However, this
manuscript shows that other parameters including the shape of the inclusion also affect the resonance frequency and can
be used to tune the device. An objective of this research is to outline novel techniques for predicting and tuning the
resonance frequencies of the mass inclusions. A parametric analysis of mass inclusion behavior is presented, probing both
mass and stiffness variations inside the HG blanket with a mass–spring–damper model. Experimental and calculated
innate parameters of the HG blanket like the ‘‘footprint,’’ ‘‘mass interaction distance,’’ and ‘‘effective area’’ are then defined.
In this paper, an empirical approach is found and used to predict the natural frequencies of different mass shapes
embedded in porous media and is shown to be accurate within 8% over a range of porous materials and mass shapes.
2. FE model and experimental investigation

This section presents the finite element (FE) model and experimental setup used to analyze the HG blanket
characteristics and the behavior of the mass inclusions. FE results are used in cases where experimental results are difficult
to obtain. The FE model of the HG blanket is based on fundamental fluid, structural, and coupled fluid–structural equations
(schematic shown in Fig. 2).
2.1. FE model

The details of the finite element code used for this work are well-presented elsewhere in the literature; therefore, this
section will only provide a brief description of the relevant literature and explain how the model was used for this work.

Panneton and Atalla [18] proposed a poro-elastic FE derivation based on fundamental poro-elastic material properties
derived by Biot [19], and this was further developed by Allard [20]. Gautam [21] expanded the scheme to include mass
inclusions (i.e. modeled HG blankets). The authors adapted this code to analyze sound transmission through a double-
panel system with a sandwiched HG blanket and have validated it experimentally [22,23]. For this work the FE model of
the HG blanket was used to analyze the interaction between the mass and a block of foam (melamine #1a in Table 1). Mass
inclusions were placed at single nodes in the FE mesh [13,14], and the stress and displacement fields generated by the
masses could then be calculated. The foam block was excited with a uniform velocity over its base. Thus, each node at the
base was driven with a constant unit velocity. Transfer functions between the input base velocity and the nodes
corresponding to mass inclusions could then be used to investigate the characteristics of the masses (such as natural
frequency and damping). In addition, the stress fields created by the excited masses could also be investigated.
Table 1
Model parameters of the FE model of an HG blanket.

Poro type Modulus of elasticity (N/m2) Density (kg/m3) Flow resistivity (N s/m4)

Melamine #1a (white) 4.76�105 8.44 1.14�104

Melamine #2 (grey) 3.83�105 9.07 0.99�104

Polyurethane 1.05�105 28.98 1.3�104

Polyamide 3.0�105 7.86 35.3�104
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Fig. 4. Experimental setup to measure the natural frequencies of the mass inclusions inside the HG blanket. Shown is the data acquisition system (1), the

HG blanket, (2) and the shaker (3).
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2.2. Experimental investigation

To study the fundamental behavior of one mass inclusion, block of porous material with a single mass inclusion was
used to determine the natural frequencies and damping of the HG blanket. The test could then be repeated for various
masses (various shapes and weights). The mass inclusion was either glued on top of the porous block or inserted into the
middle of the block after cutting the block in two pieces (half of the depth). The two pieces were subsequently glued back
together. Experimental studies have shown minimal variations of the porous material properties using this technique once
the adhesive material completely dried [24]. An acoustic foam block (melamine #1 if not stated otherwise) was placed on
top of a shaker with the block glued to a stiff honeycomb platform (see Fig. 4). An accelerometer on top of the honeycomb
platform and one on the mass inclusion allowed the transfer function between the drive acceleration at the base and the
acceleration of the mass inclusion to be measured and natural frequency determined. Both accelerometers have a weight of
0.7 g. The accelerometer on top of the mass inclusion was connected using wax. It was positioned on the inclusion center
and its mass was accounted for in all experiments. Fig. 4 shows the data acquisition system with the HG blanket and the
shaker.

For the corroboration of the ‘‘effective area’’ approach (described below), three additional porous media were used: a
different type of melamine foam (melamine #2), polyurethane, and polyamide. The parameters for the four types of porous
material were measured and are presented in Table 1. The flow resistivity was measured using the Ingard and Dear method
[25] and the elasticity taken from a dynamic shaker test [26]. The two melamine foams were acquired from two different
companies and exhibit similar, although not identical, properties. The polyurethane and the polyamide parameters vary
significantly from those of the melamine foam; the polyurethane has high density while the polyamide has high flow
resistivity. Only ‘‘typical’’ values are defined since the properties of the foam can vary from sample to sample. The authors
simply aim to outline a universal approach to predicting and controlling mass inclusion behavior in HG samples. It should
also be noted that the foam may be anisotropic. Therefore, the method proposed here is only valid if the foam is tested with
the same orientation as it is used for the manufacturer of the HG blanket.

The material properties of a nominally identical acoustic foam produced in two different batches can vary significantly
and can also vary within a single batch even within the same sheet. The five porous layers with melamine #1a utilized for
results in Table 2 (discussed in Section 3.2.4) were all from the same large sheet of foam. Melamine #1b comes from a
different batch entirely. Experimental results provided here indicate that if the test specimens are taken across different
batches of foam the standard deviation of the resulting natural frequencies is five times larger than the standard deviation
if the test specimens are all selected from the same batch.
Table 2
Parameters and results from masses embedded in ‘‘melamine #1a’’.

Mass

shape

Weight (g) Projected

area (m2)

Effective area (m2) Average mean of nat.

frequency (Hz)

One-sided 90%

confidence interval (Hz)

Theoretical nat.

frequency (Hz)

Ball 5.6 1.0�10�4 0.8�10�3 120.2 3.2 110.7

Coin 5.8 4.6�10�4 1.6�10�3 154.8 7.9 156.7

Beam 5.9 6.5�10�4 2.3�10�3 190.8 6.4 188.9

Square 5.9 18.0�10�4 4.0�10�3 240.2 8.7 246.1
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3. Parametric studies

This chapter outlines vital HG blanket characteristics including the ‘‘footprint,’’ the ‘‘mass interaction distance,’’ and the
‘‘effective area’’ to allow prediction of mass inclusion behavior.

The parametric studies of the HG blanket are performed to tune the mass inclusions to the required natural frequency.
There are two ways to tune a mass–spring system: changing the mass or changing the stiffness. Since the poro-elastic layer
acts as a distributed spring, there are many parameters that can be varied to change the effective stiffness, and these are
investigated in detail and presented in the following sections.
3.1. Tuning with varied mass

One way to tune the inclusion behavior is to change the mass of the inclusion. A foam block (melamine #1a) with
dimensions 140 mm�140 mm�50 mm (length, width, and thickness, respectively), three inclusions, and an attached
accelerometer were used. The inclusions were individually glued on top of the porous block and tested sequentially. Three
different mass inclusions with the same surface shape and area were used. Mass was varied from 11.7 to 27.0 g. Fig. 5
shows the measured transfer function between the input acceleration of the base and output velocity of the three
inclusions. The resonance frequency follows accepted mass law since the natural frequencies were proportional to the
inverse square root of the mass (Fig. 6).
Fig. 5. Measured transfer function between the input acceleration of the base and output velocity of three different mass inclusions: 11.7 g (——),

18.7 g (————), and 27 g (yy).
3.2. Tuning with varied stiffness

The stiffness of the HG blanket mass–spring–damper system is created when a region of the porous media interacts
with the mass inclusion. Tuning the mass inclusions by varying the stiffness is a complicated process. To accurately predict
behavior, tuning with varied stiffness requires the definition of mass depth, a ‘‘footprint,’’ ‘‘mass interaction distance,’’ and
‘‘effective area.’’

3.2.1. Mass depth

Varying mass depth is the simplest way to change the stiffness and thus the natural frequency of a mass embedded in a
layer of poro-elastic media like melamine #1a. Fig. 7 depicts the variation in resonant frequency of an 8 g mass in a
melamine foam block (140 mm�140 mm�110 mm) versus layer thickness. The resonant frequency of the mass inclusion
increases with decreasing depth. To indicate the trend of the natural frequency measurements, the solid line represents a
curve fit through the data points given as

fn ¼ 83:42þ
6:044ffiffiffi

x
p (1)

where the resonant frequency fn is inversely proportional to the square root of the mass depth x converging at 83.42 Hz.
Kidner et al. [27] validated this measurement in a previous experiment with a 35 mm�35 mm�100 mm melamine

foam block. The analysis in the next section signifies that Kidner et al. used a porous block too small to take into account all
stiffness effects.

3.2.2. Footprint

When varying material stiffness, the concept of the ‘‘footprint’’ is vital. Since the poro-elastic media acts as a distributed
spring, a mass moving inside this media will have a region of influence. The poro-elastic material directly adjacent to an
inclusion will move with the same displacement as the inclusion, but the motion decreases as the distance increases.
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Fig. 6. Variation of resonant frequency of an 8 g mass in a melamine foam block as a function of the thickness of foam beneath the mass. Plotted are

experimental measurements (+) and a curve fitted through measured data (————).

K. Idrisi et al. / Journal of Sound and Vibration 329 (2010) 4136–4148 4141
Beyond a certain distance from the inclusion the motion of the media becomes negligible. Therefore, the inclusion can be
considered to have a finite region of influence, or footprint. Similarly the forces generated by the inclusion only affect a
finite region on the base of the poro-elastic media. The forces are the largest directly underneath the inclusion, and
increased distance from the inclusion results in decreased forces. The footprint embodies the volume of poro-elastic media
that a mass inclusion influences and also delineates the stiffness. The definition of the footprint is dependent on what is
considered to be a ‘‘negligible’’ influence, and in this manuscript a working definition of ‘‘footprint distance’’ is suggested.
However, other definitions could also be used.
HG blanket
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150 mm�100 mm�50 mm poro-elastic layer, or the numerical ‘‘footprint distance’’ computation.
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This section presents the basic concept of a footprint, defines the footprint distance, and investigates this concept in
detail for a specific type of acoustic foam. However, the footprint is likely to vary for different porous materials with varied
physical properties. Defining the footprint for a range of materials and for various poro-block thicknesses is a future
endeavor and is beyond the scope of this document. The authors simply aim to provide a novel, systematic method to
evaluate and define mass inclusion interactions and performance.

To investigate the basic behavior of a HG blanket (melamine #1a), the FE model was run with a 20�8�8 uniform grid and
simulated on a base plate that was driven with a uniform velocity v in the z-direction (Fig. 7(a)). Fig. 7(b) shows the operating
deflection shape of the HG blanket when driven at resonance. This operating deflection shape is a cut-out of the x–z plane of the
blanket at the y-coordinate corresponding to the mass position. In this example, the length and width of the block of foam are
0.1 m, and the thickness is approximately 0.05 m. The weight of the mass inclusion is 5.6 g. The nodes of the FE model in its
static position are noted with +’s, and the displacements after moving the base plate are noted with � ’s connected with lines.
A uniform velocity (and displacement) was applied to the base of the HG blanket. The lowest row of static nodes has a constant
distance to the displaced node lines since they are directly attached to the base. As expected, the porous media provides less
motion with greater distance from the mass. One can see that the region of influence is a non-uniform area around the mass
inclusion; therefore, the footprint is a non-uniform volume considering that the operating deflection shape only shows the x–z

plane of the blanket. The key is to define and compute a horizontal distance to be able to account for the interaction between
the mass inclusions. This distance will be defined in the next paragraph and denoted as ‘‘footprint distance.’’

Similarly, Fig. 7(c) shows a plot of the force at the base versus the horizontal distance X from the mass inclusion that is
placed at the center of a 140 mm�140 mm�90 mm (length, width, and thickness, respectively) poro-elastic layer. The
plot shows that the maximum force is directly below the mass and drops down to 5% of the maximum force at a distance of
approximately X=0.04 m. Therefore this distance can be used as a working definition of the footprint distance.

In order to determine the footprint distance experimentally and to verify mathematical results presented, a shaker
experiment was chosen with the allocations shown in Fig. 4. A mass inclusion inside a very small porous block with length
and width much smaller than the footprint should experience lower stiffness than an inclusion embedded inside a porous
layer with infinite x and y dimensions. Increasing the x and y dimensions of a small block of porous material with an
inclusion should lead to an increase in the natural frequency (i.e. more stiffness). This increase will continue until the
5.6g5.6g
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dimensions of the poro-block reach the volume in which the inclusions interact, i.e. the footprint. Above this dimension,
the natural frequency of the mass inclusion should not change significantly. Fig. 8(a) shows a schematic of this concept.
A block of melamine foam with a 5.6 g mass embedded in the center position was used in the experimental design shown
in Fig. 4. Fig. 8(b) shows the top view of the porous block. As with the mathematical example, the dimensions are
140 mm�140 mm�91 mm (length, width, and thickness, respectively). The measurement was repeated while holding the
thickness constant and cutting 10 mm off on each of the sides. For the last measurement, only 5 mm was removed.
Consequently, the maximum distance X from the center of the mass inclusion to the side of the poro-block is 7 cm.
The distance X for the second measurement was 6 cm, and the remainder followed the same trend. Fig. 8(c)
shows the experimentally determined natural frequency versus the distance X. At X=0.07 m, the natural frequency is
higher than the one at X=0.015 m due to previously described stiffness effects. At X=0.04 m the natural frequency of the
embedded mass converges to 175 Hz, indicating that the natural frequency does not increase significantly with
enlargement of foam block dimensions beyond this point. Thus, the footprint distance can be considered to be
approximately 0.04 m for this case and is in agreement with the numerically computed footprint distance described above.
The results presented in Fig. 8(c) also indicate that boundary conditions have a significant effect on the natural frequency
unless the mass is farther away from the boundary than the footprint.

3.2.3. Mass interaction distance

When designing the HG blanket, inclusion interactions within a block of poro-elastic material (like melamine #1a) are
important. Two inclusions positioned a large distance from each other within a porous layer will not interact, but two
inclusions directly next to each other will interact a great deal or even act as one large mass, contributing a large impact on
the natural frequency of the HG blanket. The FE model of the porous material presented in Section 2.1 is used to investigate
the distance when the two mass inclusions are independent of each other, the ‘‘mass interaction distance.’’ A foam block of
dimensions 200 mm�100 mm�100 mm (length, width, and thickness, respectively) with a 21�7�7 FE grid was used
with two 5.6 g mass inclusions. The previous section showed that the footprint distance for a 5.6 g inclusion in melamine
foam is approximately 0.04 m. One mass inclusion was positioned 0.04 m from the side of the foam in a center-depth
position, and the second mass inclusion was positioned 0.12 m away. In this configuration there are two identical natural
frequencies, one for each of the masses. However, as the second mass is moved closer to the first, the masses become
coupled and the system must now be considered to have two modes of vibration, each with a different natural frequency
(see Fig. 9(a)). The natural frequencies for the two modes were computed for various separation distances and are
presented in Fig. 9(b). One would expect that the inclusions stop interacting when the two footprints no longer overlap,
and the two modal natural frequencies should converge to the uncoupled natural frequencies. When the inclusions are
very close together, the natural frequency of one mode (masses moving out of phase) will tend to infinity, but the second
mode (masses moving in phase) will tend towards the natural frequency of a single inclusion with twice the mass. This is
demonstrated in Fig. 9(b), and the masses stop interacting when they are 0.085 m away from each other, where the mass
interaction distance is roughly twice the footprint distance.

3.2.4. Effective area

Masses embedded inside a porous layer interact with a certain volume of the porous media. However, the footprint may
change if the mass shape is changed. By increasing the surface area of an inclusion (i.e. its projected area), it can be
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Fig. 10. (a) Schematic of the HG blanket experiments used for the ‘‘effective area’’ experiments and (b) natural frequencies of different mass shapes

measured in shaker experiment. 5.6 g ball (——), 5.8 g coin (————), 5.8 g beam (yy), and 5.9 g square (- . - . - . - . - . - . ).
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expected to interact with a larger volume of the porous media. Therefore, the stiffness of the mass–spring–damper system
inside the HG blanket is expected to increase. A shaker experiment, similar to the one shown in Fig. 4, was used to measure
the natural frequencies of four inclusions with different shapes yet with similar mass. Fig. 10(a) shows a scheme of the HG
blanket used in the shaker experiment with a mass glued on the top of the porous block.

Table 2 displays the result of this experiment. The first two columns show the mass and the projected area of the mass
shapes. The ball, the beam, and the square have significantly different projected areas. The projected area of the beam and
the coin, however, are roughly the same.

Fig. 10(b) presents the transfer functions between the input acceleration of the base and output velocity of the four
mass inclusions. Each measurement was repeated five times using five different blocks of melamine foam #1a. The mean
and the one-sided confidence interval with a 90% probability are shown in Table 2. The maximum deviation of the natural
frequency is below 9 Hz for all of the mass shapes (with a probability of 90%). As expected, the natural frequency increases
when the area of the masses is increased. Although the areas of the beam and the coin are very similar, the natural
frequency of the coin is interestingly significantly lower than the natural frequency of the beam. The results presented in
Fig. 10(b) and Table 2 indicate that the natural frequency does not simply change linearly with projected area but also is
dependent on the shape of the inclusion.

As a first-order approximation, the stiffness of the mass inclusion can be considered to change with an ‘‘effective area’’
that is defined in Fig. 11(a) as a distance d away from the perimeter of the projected area. Consequently, the ‘‘effective
area’’ of a beam with the same projected area as a coin would result in a significantly larger ‘‘effective area’’ and
consequently in a larger footprint and stiffness. This approximation assumes that the equivalent stiffness constant keq in
the mass–spring–damper system inside the HG blanket is a function of the effective area a(d) and a porous material
constant cporo:

keq ¼ aðdÞcporo (2)

Given the porous material constant cporo, the distance d and the mass weight m, one can compute the natural frequency
in Hz

fn ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðdÞcporo

m

r
(3)

Fig. 11(b) shows the projected areas as a function of measured natural frequencies (� ’s connected with the solid line).
The dashed line is the approximation of the natural frequencies plotted as a function of effective area using Eq. (3). A family
of curves with different d’s and cporo’s was plotted, and the dashed curve in Fig. 11(b) is the curve with the best fit through
all measurements. The distance d that best fits the data is used to calculate the effective areas listed in Table 2 and is
0.0105 m with cporo=3.9�106 N/m3.

To define this method as a universal predictive tool, a second type of melamine foam block, melamine #1b, with
different material properties was studied. The porous block used in the previous experiments is denoted melamine #1a.

In order to predict the natural frequency as described in Eq. (3), one must define the distance d and the material
property cporo. The cporo depends on the material properties of the porous material used, but the distance d depends on
geometry and is not strongly affected by small changes in the material properties. Therefore, d is assumed to be equal for
melamine #1a and melamine #1b. Measurement of only cporo is needed to predict the natural frequency for a given mass
shape (i.e. effective area). In order to determine cporo for melamine #1b, the natural frequencies of the beam and the coin
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Fig. 11. (a) Schematic of the ‘‘effective area’’ concept and (b) comparison of the ‘‘projected’’ ( ) and the predicted ‘‘effective area’’ (————) along

with the measurements (+) of the ball (a), coin (b), beam (c), and square (d) versus frequency.
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were measured using the same experimental design used in the previous test on poro #1. Eq. (3) was then used to calculate
cporo as 8.2�106 N/m3. Note that only one measurement, either of the coin or the beam, is needed to compute cporo.
However, a best fit between the two points was used.

Fig. 12 shows a plot with the two theoretical curves of the natural frequencies as a function of effective areas of the
mass inclusions of melamine #1a (dashed) and melamine #1b (dotted). The already presented natural frequencies of
melamine #1a are noted as � ’s, identically to Fig. 11(b). The measured natural frequencies of the beam and the coin glued
to melamine #1b are noted with squares. As the second step, the natural frequencies of the ball and the plate glued to
melamine #1b were measured. Both lie on top of the predicted dotted curve in Fig. 12, noted as circles. The proposed
Fig. 12. Experimental validation of ‘‘effective area’’ approach. Shown is the predicted natural frequency for melamine #1a (————) along with the

measurements (+). The coin (1a) and beam (1b) measurement for melamine #1b were used to plot prediction (2, yy) for the ball (3a), square (3b) and

an additional shape, a triangle (3c).
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Table 3
Parameters and results from masses embedded in ‘‘melamine #1b’’.

Mass shape Weight (g) Projected area (m2) Effective area (m2) Nat. frequency (Hz) Theoretical nat. frequency (Hz)

Ball 5.6 1.0�10�4 0.8�10�3 150 161.1

Coin 5.8 4.6�10�4 1.6�10�3 230 227.5

Beam 5.9 6.5�10�4 2.3�10�3 270 274.9

Square 5.9 18.0�10�4 4.0�10�3 370 358.1

Triangle 6.1 4.9�10�4 2.0�10�3 249 252.5

Fig. 13. Comparison of theory (————) and experiment (+) of ‘‘effective area’’ approach with (1) melamine foam, (2) polyamide, and (3) polyurethane.

Measured are the natural frequencies of ball (a), coin (b), triangle (c), beam (d), and square (e).
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formula works for porous media with the four mass shapes: ball, coin, beam, and plate. In addition, a ‘‘new’’ mass
shape, a triangle with roughly the same weight as the other masses, is introduced. The ‘‘effective area’’ of the triangle lies
between the ‘‘effective area’’ of the coin and the beam. The natural frequency was measured and plotted in Fig. 12 and is
shown to lie within 2% of the predicted value, further validating this approach. The results are summarized in
Table 3.

To prove that the ‘‘effective area’’ approach is not only valid for one type of porous medium, three additional types of
acoustic foam were used: melamine foam #2, polyamide, and polyurethane. These three types of porous media are some
of the most common materials used for interior-noise-control applications. Fig. 13 (1) shows the comparison of
the predicted and the experimental natural frequency of five mass inclusions (a: ball, b: coin, c: triangle, d: beam, e: square
plate) versus the effective area for the melamine foam #2. All five mass shapes have the same weight of approximately 6 g.
The natural frequencies of the mass inclusions inside the melamine foam remain close to the predicted curve with a
maximum error of 5 Hz. Furthermore, Fig. 13 presents the validation for polyamide (2) and polyurethane (3). Both plots
show excellent correlation between theory and experiment. The experiments for polyamide were executed care-
fully due to the compressibility of this porous media. However, polyurethane use was in accordance with the use of
melamine foam.

In conclusion, the ‘‘effective area’’ approach was validated for three of the most commonly used porous media:
polyamide, polyurethane, and melamine foam. The results presented indicate a major step towards making the HG
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blankets a serviceable treatment for interior-noise-control applications. Using this approach, the natural frequencies of the
mass inclusions inside the HG blanket can be controlled entirely by changing the shape of the inclusion. This approach
allows all of the inclusions to be placed on one layer instead of varying the depth, and this method will make the blankets
much easier to manufacture. In addition, the use of the ‘‘effective area’’ theory is not limited to a certain type of melamine
but is applicable to a variety of foams. Most importantly the proposed effective area approach, used to explain the natural
frequency of different mass shapes with constant embedded mass in porous media, has a maximum error of 8% for all the
predictions made in this manuscript.
4. Conclusions

This manuscript presented a mathematical and experimental study of the behavior of mass inclusions placed inside a
poro-elastic media. The inclusions were shown to interact with a finite volume of the poro-elastic media, termed the
‘‘footprint,’’ and it was shown that this footprint impacted the tuning frequency of the mass inclusion and the interaction
distance between multiple masses. Inclusion mass and depth were shown to alter the natural frequency of the inclusion.
Both the area and shape of the inclusion controlled the natural frequency through changing the footprint.

A novel, empirical ‘‘effective area’’ approach to predict the natural frequency of different mass shapes embedded in
porous media was found and experimentally verified for many different types of porous media, including melamine foam,
polyurethane, and polyamide. A maximum error of 8% existed for all the predictions made in this document.

By defining effective mass inclusion parameters, novel property control methodologies for HG blanket materials were
discovered that allow better control of natural frequencies through controlling the mass, depth, area, and shape of the
inclusions. In principle, inclusions of various shapes placed on a single layer in the foam can be used to control a wide range
of frequencies, and this concept will make the blankets much easier to manufacture.
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